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ABSTRACT We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in
aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of
parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent
synchrotron x-ray measurements. Elastic deformations of the DNA and the lipid bilayers are neglected, but DNA-induced
spatial inhomogeneities in the bilayer charge densities are included. The relevant nonlinear Poisson-Boltzmann equation is
solved numerically, including self-consistent treatment of the boundary conditions at the polarized membrane surfaces. For
a wide range of lipid compositions, the phase evolution is characterized by three regions of lipid to DNA charge ratio, p: 1)
for low p, the complexes coexist with excess DNA, and the DNA-DNA spacing in the complex, d, is constant; 2) for
intermediate p, including the isoelectric point p = 1, all of the lipid and DNA in solution is incorporated into the complex, whose
inter-DNA distance d increases linearly with p; and 3) for high p, the complexes coexist with excess liposomes (whose lipid
composition is different from that in the complex), and their spacing d is nearly, but not completely, independent of p. These
results can be understood in terms of a simple charging model that reflects the competition between counterion entropy and
inter-DNA (p < 1) and interbilayer (p > 1) repulsions. Finally, our approach and conclusions are compared with theoretical
work by others, and with relevant experiments.

INTRODUCTION

It is difficult to imagine a biological structure or process in DOTAP (dioleoyltrimethylammonium-propane) and neutral
which electrostatics do not play a significant role. This iSDOPC (dioleoylphosphatidylcholine) lipid, with the parallel
because of the charge carried by virtually all proteins,DNA strands intercalated between.
polynucleotides (e.g., DNA), and cell membranes. Accord- Quite different morphologies are expected to arise for
ingly, it is not surprising that attempts to understand theother choices of neutral (“helper”) lipid; in the case of
interaction of specific proteins with DNA, and with cell DOPE (dioleoylphosphatidylethanolamine), for example,
membranes, have inspired researchers to focus a great dé@lerted hexagonal (“honeycomb”) organization of the
of theoretical effort on practical ways of determining the |ipid, with single strands of DNA in aqueous solution re-
distribution of mobile counterions and their consequentgions, is implicated (Felgner et al., 1987; Tarahovsky et al.,
screening effects in aqueous solution (Honig and Nichollsj996). “Spaghetti” structures have also been reported, in
1995). Similarly, in recent discussions of liposomal vectorsyhich each DNA strand is coated by a cylindrical bilayer of
for gene delivery, i.e., targeting of extracellular DNA into the cationic/neutral lipid mixture (Sternberg et al., 1994;
cell nuclei, fundamental elec_trostatig issues arise immedisternberg, 1996). Both of these honeycomb and spaghetti-
ately because of the strong interactions between the DNAye structures have recently been investigated theoretically
and cationic lipids use_d to complex it (Felgner et al., 1987’(May and Ben-Shaul, 1997; Dan, 1998).
1996; Felgner and Ringold, 1989; Gershon et al., 1993, |, the present paper we treat in detail the electrostatics
Gustafsson et al., 1995; Lasic et al., 1997; Zuidam and,q geif.assembly characteristics of the multibilayer lamel-
Barenholz, 1997; Hui et al., 1996; Mok and Cullis, 1997). |5 gtacks of intercalated DNA, structures that we shall refer
A most compelling example is provided by the studies of,[O henceforth as & complexes (see Fig. 1). We address

Rédletr tﬁt al. _(thdler etf?]l." hl|997; S?gj&t:t atl_., 1_9?_7)' who them within the general context of the statistical thermody-
reportthe existence of highly nove ~callonic Ipesome , ies of aqueous solutions of DNA and mixtures of neu-

comple_xes, as determln_ed by_ high-resolution §ynchrotrort1ra| and cationic lipids (see Theory). Mobile counterions are
x-ray diffraction and optical microscopy. In particular, the

lipoplex is shown to consist of multilayer lamellar stacks ofdescrlbed by the nonlinear Poisson-Boltzmann (PB) equa-

charged bilayer, each consisting of a mixture of char eéion, which is solved numerically. Although we neglect
9 yer. g 9 elastic deformations of the DNA strands and bilayers, we do

allow for the possibility of spatial inhomogeneities in the
membrane surface charge density, in response to interac-
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the nonlinear PB theory. His analysis of the free energy
(which is restricted to low cationic lipid contents) is based
on a physical picture that is quite similar to ours; his
conclusions regarding the phase evolution of the system are
somewhat different. We also discuss there the quite differ-
ent approach suggested by Dan (1996, 1997), who, in con-
trast, ascribes the preferrédspacing at lonp to a compe-
tition between short-range electrostatic repulsions and
longer-ranged DNA-DNA attractions mediated by the elas-
tic deformation of the bilayer membranes.

THEORY

In this section we outline our model for calculating the free
energy of the £ complex, and derive the thermodynamic
relationships dictating the complex structure and phase be-
FIGURE 1 Schematic illustration of the lamellar {).lipid-DNA complex. havior in lipid-DNA solutions, as a function of the overall
lipid-to-DNA ratio and the cationic/neutral lipid composition.

self-consistent way, because the charge density there variﬁo del
along the direction normal to the DNA strands, and does so
in a way that depends on the distribution of counteriondgnoring edge effects, we shall treat the complex as an
(electrostatic potential), which in turn depends on the charg@nfinite periodic lamellar array consisting of alternating
at the surface. We do this in the Results section for a widdipid bilayers and DNA monolayers, as schematically illus-
range of DNA-DNA spacings, overall lipid composition, trated in Fig. 1. The DNA strands are assumed to be infinite,
and added salt concentrations. We then determine the phaparallel, and equidistant rigid rods, thus forming a one-
evolution of the system by calculating free energies andlimensional (1D) lattice. As noted in the previous section,
solving the equations that express equilibrium between théhe existence of a well-defined interaxis distarnc@vhich
LS complex and, alternately, excess DNA and excess lipiddepends on lipid composition and lipid-to-DNA ratio) has
In this way we establish how DNA-DNA spacinglsvary  been unequivocally confirmed by x-ray diffraction studies
with the ratiop of charged lipid to DNA, for each of several (R&ller et al., 1997). Theoretical support for this finding
different lipid compositions (ratio of neutral to cationic will be given in the following sections. The naked DNA
lipid). In agreement with experiment, we find that for a lipid strands in solution will be treated as infinite cylindrical rods,
mixture of given composition, the spacings are constanéind the liposomal membranes as perfectly planar infinite
throughout the lowp range, where the complex coexists bilayers.
with excess DNA. In the higlp range, where the complex  In modeling the DNA strands as infinite rods, we ignore
coexists with excess lipid, the spacings are nearly constarnhe effects associated with their flexibility, in particular
as well. Throughout the “single-phase” region, howevercurvature fluctuations and undulation forces (Podgornik et
where all of the DNA and lipids are accommodated by theal., 1989, 1994; Strey et al., 1997). This approximation is
complex, the DNA-DNA spacings increase linearly with  justified in view of the fact that the DNA persistence length
as implied by material conservation. This region is found to(¢é ~ 500 A) is significantly larger than all of the other
include the special (“isoelectric”) point at which the total relevant length scales in thé, lcomplex, namely, the DNA
charges carried by DNA and lipid are equal. Moreover, atradiusR ~ 10 A, the interaxial distance ~ 20—70 A, the
the isoelectric point the free energy of the complex isthickness of the interbilayer water gap= 25 A, the bilayer
minimal. thicknessw ~ 30 A, and the average linear dimension of a
All of the above results can be qualitatively accounted forlipid headgroupa'?, wherea ~ 70 A? is the average
by a simple model described in the Discussion, in which thecross-sectional area per lipid molecule in the membrane. It
electrostatic effects enter only via the “excess charge” thashould be noted that any curvature fluctuation of an indi-
measures the extent of deviation from the isoelectric pointvidual DNA strand within the monolayer implies a change
In this way one can understand the constancy of DNA-DNAIn d extending over a distance of ordérFrom the calcu-
spacings at low and high i.e., at large deviations from the lations presented in the next section, it will become apparent
isoelectric point, directly in terms of the mutual repulsionsthat such changes involve an electrostatic free energy pen-
between like-charged DNA strands or lipid bilayer surfacesalty of severakgT's, indicating that curvature and interaxis
respectively. We include in the final section a brief accountfluctuations in the complex are rather smadj; (s Boltz-
of the theory of the f complex presented independently by mann’s constant and is the absolute temperature).
Bruinsma (1998), who interprets the observed structural Another assumption that will be made in this work is that
evolution @ versusp) via approximate analytical solution of the lipid bilayers are perfectly planar, and their thickness,
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is constant and independent of their lipid composition. Inaxis, between two neighboring DNA strandls= h + wis
general, one cannot exclude the possibility of membrang¢he distance between two bilayer midplanes along/tives;
curvature modulations induced by the DNA lattice (as scheands is the “depth” of the unit cell along the (the DNA
matically illustrated in Fig. 1). For lipid bilayers of high axis) direction. Because the complex is translationally in-
bending rigidity (Helfrich, 1973), these modulations arevariant along the axis, the calculation of the complex free
expected to play a minor role in determining the complexenergy is a 2D problem, and the choicesdd arbitrary (Fig.
stability. On the other hand, when “soft” bilayers are in- 2). Our numerical results will be reported fer= 1 A. For
volved in complex formation, these curvature modulationsthe numerical evaluation of the complex free energy, it is
may become increasingly important, possibly leading toconvenient to consider only one-quarter of a unit cell, as
structural phase transformations involving, say, the invertegdhown in Fig. 2.
hexagonal/honeycomb states mentioned in the Introduction.
The assumption of constawtis justified for bilayers whose
cationic and neutral lipid components are of similar chain
length. This is the case for the neutral lipids DOPC andLet fo = f-(¢, d, h) denote the free energy of one unit cell
DOPE, as well as the cationic lipid DOTAP, mixtures of of the complex, whereb = ¢ is the average mole fraction
which are known to form lamellar complexes with DNA of the cationic lipid in the complex. Alternatively, we may
(R&dler et al., 1997). The extension of our model to casesnterpretf. as the free energy of a DNA strand (of lengjh
wherew varies with the lipid composition is, in principle, when incorporated in a complex characterizeddhy d, h
straightforward. plus the free energy of a complexed bilayer segment con-
The negative charges on the DNA surface are denseltainingn = 2s X d/a lipid molecules. In the limid — oo,
spaced; the average spacing between these charges aldmng> o, the complex disintegrates into well-separated DNA
the axis of B-DNA isl = 1.7 A. We shall assume that these and lipid bilayer. Thudc(d, d — o, h— ) = fy, + fz(d) =
charges form a continuous and uniform charge distributiorf, + dfg(¢). Herefy is the free energy of a naked DNA rod
over the DNA surface, which will be regarded as a perfectof lengths, andfg(¢) is the free energy of a bare bilayer
cylindrical envelope. This approximation is supported bysegment of area X d; fg(¢) = fg(¢)/d may be interpreted
numerical studies revealing that the electrostatic potentiahs the free energy per unit length of a bilayer strip of width
around the DNA surface is not different from that produceds. (fg/n = (a/29)fy is the free energy per lipid molecule in
by a continuous charge distribution, except for a narrowthe bilayer.) Conversely, the difference
region in its immediate vicinity (Wagner et al., 1997). In all -
of our calculations, we shall use= 10 A for the radius of Afe(d, d, h) = fe(¢, d, h) — fp — dfe(e) 1)
this cylinder, implying a uniform charge density =
el2mRI~ 0.15 Cm 2, corresponding, approximately, to one
elementary charges, per 110 X.

Formation free energy

may be regarded as the free energy change associated with
complex formation from its separate, DNA and lipid bi-
. layer, components. A complex characterizeddhyl, andh

¥s thermodynamically stable only iff. < 0. We now turn
constituting the membrane are ideally mixed. In the free y y y fle

bilayer this implies, on average, a uniform and continuous
charge distribution. The charge densityis = ed/a, where
¢ is the mole fraction of the cationic lipids aralis the
average area per lipid headgroup. On the other hand, in the
bilayers of the complex we shall allow for spatial modula-
tions of the cationic charges, while assuming that ideal
mixing applieslocally. In all calculations we shall use =
70 A? (implying 0~ = ¢ when¢ ~ 0.65) for both lipid
components, in both the free and the complexed bilayer.
Finally, the naked DNA, the free lipid bilayer, and the
lipid-DNA complex will be treated as macroscopic phases,
i.e., we ignore the free energy contributions associated with
their overall translational and rotational degrees of freedom.
These free energies are on the order kfTlper particle,
much less than their “internal” (electrostatic and mixing)
free energies.

Free energies

. . FIGURE 2 Schematic representation of one-quarter of the complex’s
We define a unit cell of a complex as a rectangular box ofynit cell. The Poisson-Boltzmann equation is solved in the aqueous interior

dimensiondd X b X s, whered is the distance, along the  subject to boundary conditions appropriate for surfaces -V (see text).
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to a more detailed discussion of the terms appearing on thgosition must satisfy the conservation constraint
right-hand side of Eq. 1.
_ Js,mdS

(b_ f&ds ’ (3)

Complex . . N

) ~ whered¢ is the mean mole fraction of the charged lipid in the
As we do not allow for curvature or thickness modulatlonscomp|ex_
Of the I|p|d |ayerS,f(? inVOIVes Only two Contl’ibutionSZ the Functional minimization OfC with respect thH n_ and
electrostatic (charging) free energy of the complex and the, supject to the conservation constraint (Eq. 3), yields the
(in-plane) lipid mixing entropy. Although, locally, the two  following results. For the mobile ion distributions, one finds
lipid components are ideally mixed, the presence of thnhe ysual Boltzmann distributions, = n, exp(x ), which

negatively charged DNA grid can induce a spatial modulaypon substitution into Poisson’s equation, yield the PB
tion (or “polarization”) of the cationic lipid charges (along equation,

the x axis), to minimize the electrostatic energy of the

system. However, this tendency is opposed by the lipid V2 = k’sinhy, 4)
“demixing” entropy penalty associated with any deviation . e

from a uniform distribution. The extent of lipid demixing WhereK+ = (€oeka T/2nGe%) " = I is the Debye length.
(charge modulation) is governed by a delicate interplay FOF ¢ (X) = en(x)/a, the local charge density on the
between these two opposing tendencies. That is, the elef€mbrane, we obtain

trostatic and lipid mixing contributions to the complex free o (N
energy are strongly coupled. Thus the lipid composition n= i = —aViy- A, (5)
profile n(x), the electrostatic potential in the complex inte- A-dlp+e

rior ¢(X, y), and the actual value of the complex’s free
energy,fc(¢, d, h), must be determined by minimizing the
total free energy functional, which includes both the mixing
and electrostatic terms, namely,

wherea = aekgT/€?, A is the Lagrange multiplier conjugate
to the charge conservation constraint (Eq. 3), and the
unit vector normal to the boundary (pointing into the di-
electric medium). The second equality in Eqg. 5 is Gauss’
T2 . . equation, relating the local surface charge densi#tatthe
_(Kel) | € 2 Ny n- electrostatic potential at the membrane surface. This equa-
fe= ( ) J‘Z(V"b) dv -+ kBTf[mln Ny +nn Ny tion represents one of the boundary conditions (boundagy \%
Y v in Fig. 2) on the electrostatic potential and must be solved
simultaneously, and self-consistently, with the PB equation
-y +n_— 2n0)]dv (Eg. 4). Note that for our model of theSLcomplex, both
equations are 2D.
ke T The other boundary conditions, pertaining to domain
+ J [nInn+ (11— nInl - n)]dS (2)  boundaries I-IV in Fig. 2, are less intricate. At the DNA
a s, surface (domain boundary Ill), the boundary condition is
that of constant charge densityVis- i = eo /epe kg T. For
The first term on the right-hand side of this equation isdomain boundaries I, Il and IV we have, by symmetry,
the electrostatic energy = ep/kgT is the scaled (dimen- dy/ox|, = 0, aylay|, = O, ay/ax|, = 0. The numerical
sionless) electrostatic potential; aner ey¢,, wheree, isthe  procedure for solving the PB equation (Carnie et al., 1994;
dielectric constant of the solution arg is the permittivity ~ Stankovich and Carnie, 1996; Houstis et al., 1985) and for
of vacuum (Verwey and Overbeek, 1948). The integration issvaluating A, ¢ and the free energy of the complex is
over the volume of the unit cell. We use = 78 for the outlined in the Appendix.
agueous regions, and assume= 0 in the interior of the
DNA and the lipid membrane. The second term accounts for
the translational (“mixing”) entropy of the mobile ions in Bare bilayer, naked DNA

the gomplgx interior, relative to their entropy in the bulk The free energy of the bare bilayer is a sum of mixing and
solution, withn, = n_ = ng, n.. = n. (x,y) denoting the  gjectrostatic contributiond, = T +f&, both depending on
local concentrations of mobile ions in the complex. (Wehe lipid compositionp. (By symmetry, at equilibrium, the
assume a 1:1 electrolyte solution.) The last term accountgjjayer is planar and the lipid compositions in its two

for the mixing entropy of the charged and neutral lipids inyonolayers are identical.) The mixing entropy contribution
the membrane plane. The integration is over the membran@)er unit length of a bilayer strip of widt) is

surface (surface Vin Fig. 2). Locally, i.e., at axythe lipids

are assumed to be ideally mixed, wijh= n(x) denoting the 1= 2da)ksT[dIn b + (1 — d)In(l — ¢)].  (6)
local mole fraction of the charged lipid. (Recall that the

average area per lipid in the membrane is assumed to Heor f§ we can use a closed-form expression for the electro-
independent of the lipid composition.) The local lipid com- static free energy of a charged planar surface (Lekkerkerker,
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1989): the naked DNA and the complex are treated as (immobile)
macroscopic phases.
~ 1-q As the concentration of monomeric lipids in solution is
e __
fe = 2(2a)ksTeb p +in(p+ q)], ) generally negligible, we can safely assume that all lipids are

organized in bilayers which, in both the free and complexed
states, are assumed to be planar. We find it convenient to
express the total bilayer are@,= Na, in the formA = sL,
7.14 A). Note that, with the identification ¢f = e/2molz o thatl is the total “length” of the bilayer, if regarded as
as the Gouy-Chapman length & ed/a), andl, = k *as  a strip of widths. We shall usé.c = xL andLg = (1 — x)L
the Debye lengthp is recognized to be the ratio of funda- to denote the total length of the complexed and free bilayer,
mental lengthsp = Ip/lc. respectively. Note that. = dD., whered is the distance

In Fig. 3 we show the bilayer free energy per molecule,petween DNA strands in the complex. Also, usiNg to
fg/n = (f§ + fg)/n, as a function of the lipid composition, denote the number of cationic lipids in the complex, we
¢, for two values of the Debye length, = 50 Aand 10 A, defineLy = (a/s)NZ. Similarly, we defineL = (a/9)Ng,
It should be noted that the electrostatic (charging) energy is2 = (a/g)N2, LS = (a/9NJandLl + Lg =L", L2 + LG =
a monotonically increasing function abg; the shallow | ° The mole fractions of cationic lipid in the complexed
minimum of f; at small ¢g is due to the lipid entropy and free bilayer are given by. = Ni/N- = LE/Lc and
contribution, fg' (whose minimum is athg = 1/2). Also ¢, = N3/Ng, respectively. These two lipid compositions
shown in this figure is (the constant) energy for charging aare generally different, but related to each other by the
naked DNA of lengtha/27R, corresponding to a DNA conservation condition (“lever rule”)
surface area o = 70 A2, This energy is calculated by the
numerical solution of the (1D) PB equation for an isolated Xbc + (1= x)psg =m, (8)

charged cylinder in agueous electrolyte solution. The result§vherem — N*/N = L*/L is the overall mole fraction of
shown in Fig. 3 will later be used for calculating the ... lipid in solution

lipoplex formation free energy and the phase diagram of the Finally, we introduce the (dimensionless) quantity

system.
p = N./(sDll) = (mUD)(I/a), 9)

with p = 2¢lg 7/(ka) andq = Vp? + 1; |5 = e/(4meksT)
is the Bjerrum length (in water at room temperatige=

expressing the ratio between the total number of surface
positive (lipid) charges and negative (DNA) charges in the
Consider an aqueous solution containing DNA strands okystem. Of particular interest is thistelectric point’ p =
total lengthsD, N* cationic lipids, and\°® neutral (helper) 1. Experiment shows (at least for~ 0.5) that at this point
lipids; N* + N° = N. The total length of DNA associated all of the lipids and DNA in solution are involved in
in complexes will be denoted &b, (D = D). Note that  complex formation (Raler et al., 1997). In the next section
D¢ is also the number of unit cells in the complex. The we shall show that this result holds for a wide range of lipid
length distribution of the DNA strands is irrelevant, as bothcompositionsm and, furthermore, that the isoelectric point
corresponds to the minimum of the complex free endggy
Experiment also shows that upon increasing the overall
lipid-to-DNA ratio (L/D), at constant lipid compositionr,

Phase behavior

70 the system evolves through three distinct regions:
// 1. WhenL/D (equivalently,p « L/D) is small, the system is
50 yan biphasic; the solution contains lipid-DNA complexes
S/ that coexist with excess, naked DNA. Thus, in this
FAT L L s/ p region,D > D¢, wheread - = L (no free bilayer). The
B 30 ’ DNA-DNA distance in the complex is constard, =

d,(m), independent op as long asp = p,(M), which
marks the onset of the next region. Onee= p,, all of
the DNA is complexed, so thd. = D = L/d;, and
hence, from Eq. 9, = md,(I/a). In generalp, < 1.

FIGURE 3 The free energy per molecule in the bare lipid bilayer (of area
a = 70 A? per molecule) as a function of the cationic lipid mole fraction.
Also shown is the charging enerdy = afy/27Rsof a naked DNA of
surface area. The solid and dashed curves corresponthte 10 A and

50 A, respectively.

. Betweerp, and a certaip, = p,(m) > 1, the system is

one-phasic: all of the DNA and lipid is involved in
complex formation. Thud,. = L, D = D, and hence
d = L/D = (a/ll)(p/m) increases linearly with the lipid/
DNA ratio, fromd, at p,, throughd, = d,(m) = (a/l)/m

at the isoelectric pointo(= 1), tod, = d,(m) at p,(m) =
md,(I/a), which marks the onset of the third region. In
general,p, > 1.
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3. For largeL/D (p > p,) the system is again biphasic, results from the partial release of mobile counterions into
containing complexes that coexist with an excess bilayesolution upon bringing more DNA charges into contact with
phase,D. = D, Lo < L. In this region the system the cationic lipid charges. Wheh= d,, this “overcharging”
possesses an extra thermodynamic degree of freedorof the complex by DNA is balanced by DNA-DNA repul-
namely, the lipid composition of the comple®: (or,  sion within the complex (the latter of which increasesdas
equivalently,¢g, which is related tap: by Eq. 8). Thus, decreases).
unlike in region 14 (hencedg) need not be equal to. In region 2, where all of the DNA and lipids are associ-
In other words, for anynandL/D, the system will adjust ated in complexes; = Dfs(m, d), andd = L/D increases
both d and ¢ so as to minimize its total free energy. linearly with the lipid-to-DNA ratio. (The linear increase
Indeed, we shall see that in the excess bilayer regiomeflects our assumption that the bilayer is planar and later-
both ¢ (hencegpg) andd vary with p. It should be noted, ally incompressible.) At some point within this region,
however, that experimentallyl ~ d,(m) appears to be generally very close tp = 1, the complex free energy is
independent op in region 3. This result will be dis- minimal (i.e.,d,(m) = d*(m)). The uptake of bilayer into the
cussed in more detail in the next section. complex continues beyond this point, as long as the added

lipids enjoy lower free energy in the complex as compared

In principle, the system may also exhibit t.hree-phaseto that in the free bilayer. Eventually, at somhe= d,(m) >
(complex/bilayer/DNA) coexistence as well as bilayer/DNA & (and p = p,(m) > 1), interbilayer repulsion becomes

coexistence. However, these conditions correspond to Vel fficiently large to forbid further accommodation of bi-

narrow regions of the phase diagram (lowvalues), where layer in the complex, marking the onset of region 3. To

the complexes are either unstable or only marginally Stables;upport this qualitative description, let us first consider the

We shall thus focus on the three-stage scenario oumneﬂypothetical case of “blocked lipid exchange,” wheire =

above. o ible bh f ¢ = m. (This limit could perhaps be realized experimen-
Our analysis involves three possible phases: free DI\IAtaIIy, as a transient state, if the rate of lipid exchange is

_free biIayer,_and complex. The first two may be regarded a mall compared to that of complex formation.) Setting
incompressible condensed phases. On the other hand, t > — D, ée = g = min Eq. 10, and minimizing® with

complex is “compressible” because both the DNA-DNA respect tad, we find
spacingd, and the interbilayer spacing, may vary withm ’
and L/D. However, both experiment and our calculations ofc ~
(next section) show that in general, ordyvaries signifi- (ad) — fs(m) =0, (12)
cantly with m and L/D, whereash is essentially constant, "
h ~ h*. In other words, for mostc andd, the complex free  which determinesd, = d,(m) for the case of blocked
energyfc(¢c, d, h) has a narrow and deep minimumkédt  exchange. For this special case dgim) denote the value of
Thus we can safely treét = f-(¢c, d) = fo(de, d, h = h*) p at the boundary between regions 2 and 3, corresponding to
as a function of only two variables. x = dD/L = 1in Eqg. 8. From Eq. 12 it follows thal =

For givenm and L/D (and givenlp), the number and az(m) is constant throughout region 3 & p,(m), or 1 >
nature of the phases in solution are determined by thg > 0). Becausel,(m) is also the maximund in region 2,
minimum of the total free energy, it follows thatp,(m) = md,(I/a). Finally, because the bilayer

- charging energyfg(m), is positive, it follows from Eq. 12

F= (D — Do)fp + Dcfe(de, d) + (L — dDo)fe(ds),  (10)  thatd, > d*.

In the more general casefoée lipid exchanggthe values
of d, ¢, andgg in the bilayer-complex coexistence region
are determined by the equilibrium conditiorg=(od) = 0
and @F/odc) = 0. Noting that in this regio®. = D and
(dD/L)¢pc + (1 — dD/L)¢pg = m (see Eq. 8), we obtain

with respect toD, d, and ¢ (¢pg depends on these three
variables through Eg. 8).

SettingD¢ = L/d, ¢ = min Eqg. 10, and minimizind~
with respect tod, we find the equilibrium condition for

region 1,
f df
ot o(fo/d) (‘90> _g e (13)
fe(m, d) — d(6d>m —fp= (6(1/d) . —fo=0. (11) ddc/, dee
This equation determines the equilibrium interaxis dis- dfc ~ B de
tance in the complexd = d;(m), in the presence of excess od] fo(ds) = (bc — d)B)dTSB' (14)

free DNA. Based on this equation, we anticipate thatvill v

be smaller than the “optimal” valuel* = d*(m), corre- We could rewrite the last two equations in a slightly
sponding to the minimum dg(m, d). This follows from the  different form in terms of; = f./d, the free energy per unit
fact that the free energy of a DNA strand in a stablelength of the complex, instead 6, the free energy per unit
complex must be lower than in solution, and hefige— cell. Then, ifd were constant (“incompressible complex”),
fc(m, d) > 0, which meansdfc/dd)q—q, < 0. Physically, the  Egs. 13 and 14 would reduce to the familiar “common
“overcrowding” d, < d*) of DNA strands in the complex tangent construction” fofs andfg, representing the coex-
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istence conditions of two incompressible binary mixtures. If 100 —
this were the case, we would also find thigt and ¢g are
independent of. However, because the complexes are not g0 | e
incompressible, botld and ¢ (and hence als@g) may an A
vary with y, as will be shown in the next section. 60 o0

fo kT TR TR
RESULTS AND ANALYSIS 401
Following the discussion in the previous section, we shall 20 b
first present and analyze the numerical results for the free
energy and structure of an isolated DNA-lipid complex and 00 \ : . ,
then discuss the phase behavior of the solution. Comparison 00 02 04 06 08 10

with detailed published data foriLcomplexes is possible 0.

for only one kind of system: a solution containing an

equimolar (n = 0.5) mixture of cationic (DOTAP) and *;IGIL_JRdE 5 Tht_et_freefenergy pTr urit cellf?:]thg l\tl:szp'\IK, as a}dfun;t;on of

H H i H H the lipid composition, for several values o e - spaciag:

e R e o LT BT (e T e o
v s | . ! - spacing,d* (—) and isoelectric spacing, (——) vary with the lipid

bulk concentration of mobile ions in this system is low, but composition in the complex, revealing thet and d, are essentially

the exact concentration is unknown (as it is volume depenidentical.

dent). Thus, in most calculations, we have usgds 4 X

103 M, corresponding to a Debye lengif = 50 A. Very o )

similar properties and phase behavior of the complex were All of the results shown in Figs. 4 and 5 were obtained

found for larger values of,. Partial results will also be usingh = h* = 26 A, corresponding to a minimal distance

presented fol, = 10 A, corresponding to physiological salt of 3 A between the DNA gnd bilayer surfaces. This is the

concentrationsr, ~ 0.1 M). In all of the calculations value ofh* observed experimentally for thellcomplex by

reported below, we have us&= 10 A for the DNA radius ~ Radler et al. (1997). It should be noted, however, thtais

anda = 70 A2 for the average area per (both cationic andlarger than the minimal value of the interbilayer spacing,

neutral) lipid headgroup. hmin = 2R = 20 A. In fact, for most values o, our

calculations show that the electrostatic free energy of the
complex decreases monotonicallytadecreases, including
Complex structure and stability the regionh* > h > h_;,. Thus we treah* ~ 26 A as the

The electrostatic (charging) free energy per unit cell of theeffectlve range of a "hard-wall’ potential, representing the

. . short-range repulsive forces arising from hydration, protru-
complex,fe, is shown as a function df for several values sion, and other excluded volume interactions (Israelachvili
of ¢ in Fig. 4 (fors = 1 A, 1, = 50 A). Similarly, Fig. 5 ’ ’

showsf.. as a function of.. for several values od 1992_; _Israelach_vili and Wennersing 1990). Subject to this
c c ' condition, we find that for all¢ larger than~0.2, the
minimum inf-(¢¢, d, h) is always ath = h*, regardless of
d. For very low values o (less than 0.2), we find, for low
100 ———————— d’s, that the optimal value dfi increases ad decreases, as
demonstrated foth = 0.15 in the inset to Fig. 4. Note,
however, that for these low:’s, the minimum off occurs

80T \\\ 00 4ok -
Y 80 at larged*’s, where again,h = h*. More generally, our
60 | ——e 4o conclusions regarding the complex structure and stability or
FoleT TR the phase behavior of the system are not sensitive to small
wl d/A variations inh*.
' In Fig. 4 we see that the optimal DNA spacing in the
ne complex,d*, is a decreasing function ab.. Similarly, Fig.

5 shows that the optimal complex compositidi}. is a
decreasing function of the DNA-DNA distance.
0-020'0 200 400 56'9 500 700 800 _Q_ualit_atively, these rgsults are easily understood. The
d/A minima in the electrostatic free energy are expected to occur
when the fixed negative charges on the DNA surface are
FIGURE 4 The free energy per unit cell of the complex as a function ofhalanced by the same number of positive charges on the
t_he_: DNA-DNA spacing, for several different mole fractions of the_catlonlc biIayer surface, i.e., at the isoelectric point. At this point, the
lipid: ¢ = 0.23 @), 0.39 @), 0.50 (¥), 0.62 @), 0.78 @&). The inset . . ; .
shows the optimal interbilayer distand®, versus the optimal DNA-DNA ComP|e)_‘ Wlll_re_ma_m el_ectrlcally neutral, even_ if all of the
spacingd, for a low lipid composition,éc = 0.15 @). For all ¢ larger ~ Mobile ions in its interior would be released into the bulk
than~0.2, h* is constant H). solution, thus increasing their translational entropy and con-
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sequently lowering the free energy of the system. Of coursepf this increase, i.edf/ad, is proportional to the electro-
some counterions will always remain within the complexstatic free energy per unit area of the bilayer in the complex.
water gaps, as dictated by the bulk value of their chemicaThis free energy is a sum of the bilayer charging energy,
potentials. However, the concentrations of these mobile iong/hich increases withp- (see below) and the interbilayer
will be much smaller than in the diffuse layers near therepulsion energy. For most values ¢§ considered here,
surfaces of the noncomplexed DNA and membrane. Novthe complex conditions are those of the “Gouy-Chapman
the total charge on the bilayer surface is proportional taregime” (Andelman, 1995), where the interbilayer interac-
d X ¢, whereas the total charge on the DNA surface istion energy is independent of the surface charge density.
constant. Thus, at the isoelectric poth{dc) = (a/l)/pe,  Thus thed dependence of the asymptotic slopefgfin
explaining the decrease éh= d* with ¢.. The insetto Fig. Fig. 4 is mostly due to the charging energy of the lipid
5 shows howd, and d* vary with ¢-. The two curves are monolayers.
essentially identical, confirming that the complex free en- These notions are confirmed in Fig. 6, which shows the
ergy is, indeed, minimal at the isoelectric point. Thus,formation free energy of the compleXf., as a function of
hereafter, we sead, = d*. d for several values ofp.. Note from Eq. 1 that this
Figs. 4 and 5 also reveal that the minimum value of thequantity, which represents the net stabilization energy of the
complex free energfc = fo(dpe, d*(P)) varies rather complex, is obtained frorfy, after subtracting the charging
weakly with ¢. More generally, we note that @s- (ord)  energy of the noncomplexed DNA and bilayer. Thus the
is changed, the complex can change dtgor ¢¢), i.e.,  steep variation ofAf- at small values ofl is dominated by
“cross” to a neighboring free energy curve, without signif- the strong DNA-DNA repulsion (counterion confinement)
icantly changing its free energy. This ability of the complexin this regime. Similarly, the increase if at high d's
to change its composition (ard) at minimal free energy (d > d*) is due almost exclusively to interbilayer repul-
cost is manifested when complexes coexist with an excession. From the discussion above it follows that in this region
bilayer phase, in which casg- and ¢g are determined by 9dAf-/dd should be nearly independent ¢f, as confirmed
the minimum off (rather tharf.), as will be demonstrated by Fig. 6.

in the next section (Phase evolution). From the results in Fig. 6 we also conclude that stable
Based on the numerical results fgr we can estimate the complexes Af- < 0) can be formed for a wide range of
amplitude of interaxis fluctuationgyd = [{(d — d*)?)]*2 lipid compositions. The complex stabilization energies are

Imagine that one DNA strand, say of lengfls= 500 A, is  on the order of a fewgT's per unit cell. For a “mesoscopic”
displaced toward one of its neighbors by a distadatethus  complex, containing DNA strands of total length on the
creating two unit cells of dimensiorts= d* = &d. Allow- order of, say, Ium, this implies a total stabilization energy
ing the lipid composition in the new unit cells to relax on the order of 1HkgT.

(implying 8¢ = ¢(6d/d*)), the free energy cost of this In the previous section we emphasized the fact that the

fluctuation iséf = &fE(d — od) + f&(d + 8d) — 2fE(d)] =  lateral distribution of the cationic lipid charges in the com-
E0%/0d?)(8d)%. We find that 6f ~ 1 kgT for Ad =  plex need not be uniform. Indeed, we find that the actual
|od| = 1 A charge distribution is polarized, reflecting a compromise

Whend < d*, there is a net negative surface charge onbetween the tendency to minimize the electrostatic energy
the complex “walls.” To ensure electrical neutrality, posi- on the one hand, and the unavoidable demixing entropy
tive mobile ions must be brought from the bulk solution into
the confines of the complex, thus increasing the free energy
of the system. Agl decreases, the excess concentration of ' - :
positive counterions increases, for two reasons: the increase —10 by
in the excess surface charge and the decrease in the inner \
complex volume. The concomitant increase in the free en- \
ergy of the complex, and hence the effective DNA-DNA 200N
repulsion, is due to the excess charging energy of the DNA \ \
surfaces, and the increased osmotic pressure of the counte-  Afc /T \ N
rions within the complex interior. (A simple electrostatic
model accounting for this behavior will be described in the
Discussion.)

Similarly, asd increases above*, negative mobile ions
must be brought into the complex to balance the excess
positive charge on the (lipid bilayer) surfaces. However,

unlike in thed < d* region, where counterion confinement 200 400 600 800 1000
depends strongly od, in this region counterion confine- dl

ment is mainly due to the finite bilayer spacihgBecause
his constantfc is expected to increadmearly with d (in for several values of the lipid compositiotig: 0.3 (— —+-), 0.5 (—), 0.7
the larged region), as is indeed observed in Fig. 4. The rate(---+), 0.9 (—).

FIGURE 6 The formation free energy of the complex, as a functiat) of
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penalty on the other hand. The extent of spatial charge A

modulations in the complex is demonstrated in Fig. 7. The LS S

figure shows the variation in the local charge densjfy) !

between two neighboring DNA strands, for complexes of 00T [

three lipid compositions (high, low, and equimolag =

(n(x))), all at their isoelectric (i.e., optimal) value df d/A 0ot
When ¢ is low, d* is necessarily large. To effectively

screen the negative DNA charges, cationic lipids must be |7 /=g

displaced over a relatively large distance, resulting in a 400 ST

dramatic charge modulation. On the other hand, whgis

large,d is small, and the charge segregation is rather weak. 200

In fact, in this case some of the charged lipids are shifted

from the immediate vicinity of the DNA toward the center

of the unit cell, as their optimal local concentration near the B

DNA strands is lower thanp.. (Recall that the charge

density on the DNA surface corresponds to one elementary

charge per~110 A%, The average charge density on the 800 ¢ [T :

bilayer surface isp-/a, which, for ¢ = 0.78, corresponds /

to one elementary charge pe©0 A2) Intermediate though L

substantial charge modulation is found for the equimolar d/A w00 —— T

lipid mixture, ¢ = 0.5. For this system we also show, for

comparison, the charge density profile in the hypothetical

case in which lipid segregation does not involve a demixing

entropy penalty. (Namely, we artificially ignore the lipid

m=08 06 05 04 03

0.0 1.0 2.0 3.0 4.0

400

m=08 06 05 04 03

mixing entropy contribution td.. The PB equation is then 200 . . :

solved subject to the condition of constant electrical poten- 00 1020 30 40

tial on the bilayer surfaces, as if they were conducting P

sheets.) As expected, the charge modulation in this SySterI:—qGURE 8 The DNA-DNA spacingl in the complex, as a function of
is still more dramatic than in the “real” complex. the charged lipid-to-DNA ratip, for several lipid compositionsn = 0.3,

0.4, 0.5, 0.6, 0.840lid lineg. For each value ofm, the dashed curve
. describes the variations ith for the case of blocked lipid exchang&) (
Phase evolution Ipb =50A. @) I, = 10 A.

In Fig. 8, A andB, we show howd, the DNA-DNA spacing
in the complex, varies wittp = m(l/a)L/D, the (scaled)
charged-lipid to DNA ratio in solution. Thé — p plots in
Fig. 8 a were calculated for a solution of low salt content,
1.0 ————— I = 50 A, and several different lipid compositions.
Similar calculations are shown in Fig.t8for 15 = 10 A.

0.8 078 These calculations provide the most critical test of our
_— = model, becausd is an experimentally measurable quantity.
0.6 “ =050 P/ /1 The experimentall — p data points of Rdler et al. (1997),
" . ) which were obtained for an equimolar lipid mixtune &
04 — 0.5) and without added salt, are shown in Fig. 9. Also shown

in this figure are the theoretical curves corresponding to

P N\es S I, = 10 A and 50 A, both fom = 0.5. The low-saltlg, =

50 A) results show reasonable agreement with the experi-

0.0 EEE———
00 02 04 06 08 10 mental data. The inset to Fig. 9 shows how the (calculated)
x/d lipid compositions in the complex and free bilayer (in the
. . o - _“excess bilayer” regime) vary with the charged lipid-to-
FIGURE 7 Spatial modulations of the cationic lipid charge within a unit DNA ratio

cell of the complex. The local charge density profitgx) (between two . . .

neighboring DNA strands), is showsd(id lineg for complexes of three The d — p “phase diagrams” in Figs. 8 and 9 were
lipid compositions:¢. = 0.23, 0.50, 0.78. All complexes are at their calculated using Eq. 11 for region 1 (excess DNA), and Eqs.
isoelectric value ofl. The horizontal dashedl lines correspond to uniform 13 and 14 together with the lever rule (Eq. 8) for region 3

charge densities. The dash-dotted line, correspondinfi:te 0.5, shows (excess bilayer). Equation 11 yielaﬂg _ dl(m) for the

the charge density profile in a (hypothetical) complex in which charge . ; _
modulation (lipid demixing) does not involve any entropy penalty. Note complex-DNA coexistence region 1, 8 p = p)(m) =

that in all but the highesp.. case, cationic lipid is pushed out from between Mdy(1/@). In the one phase (complex) region®= L/D =
the DNA positions. (a/l)(p/m) varies linearly withp. The slopegd/adp, in region
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55.0 : . . . asymptotically,b- > m. From Fig. 8 it is apparent that the
change ind in region 3, i.e., the differencd, — d., is
generally small, and is essentially negligible for ldwy
and/or largem.

The dashed curves in Fig. 8 show, for comparison, dow
varies withp in the limit of “blocked lipid exchange.” For
this case, regardless of the valuengfwe see that the onset
of region 3 is postponed to a largefD ratio, corresponding
to p = p, > p, and consequentlyd = d, > d,. For this
special casel = d, in region 3 is independent qf. The
difference between the cases of “blocked” and “free” lipid
00 10 20 30 40 50 exchange is particularly pronounced for small valuesnof

p Qualitatively, the differencel,(m) — d,(m) > 0, which
reflects the role of lipid exchange between the complex and

FIGURE 9 The DNA-DNA spacingd, as a function of charged lipid- the free bilayer, can be explained as follows. In the case of

to-DNA ratio, p, for m = 0.5;1, = 50 A (solid line), 10 A (dashed ling blocked exchangedi- = ¢g = m), a free bilayer first

The dot_s are t_he 'e>.<perimenta'l _data_ ofiRa et al. (1997). The ins_et shows appears when the increasefinupon the addition of lipids

the variation in lipid composition in the complex and free bilayer as a .

function of the charged lipid-to-DNA ratio, fdg, — 50 A. to the complex pe.comes larger than t.he electrqstatlc free
energy of these lipids when organized in a free bilayer (see
Eq. 12). This happens at= p,(m) andd = d,(m). Suppose

2 is inversely proportional to the charged lipid mole frac- NOW that, at this point, we allow for lipid exchange between

tion, m. the complex and the bilayer. The bilayer (charging) energy

For region 3 the calculation is a little more complicatedc@n be significantly reduced by diluting its charges with
because of the additional lipid composition degree of freeneutral lipids, which can be imported from the complex,
dom. For each value of, the solution of Egs. 13, 14, and thus makingdg < m. This, in turn, implies an increase in
8 yield d, ¢c, dg as a function op in the complex-bilayer ~the complex charge density, fromto ¢c > m. However,
coexistence region 3. The onset of this region ipat=  this change can be accommodated at a minimal free energy
md,(m)(I/a). At this point all lipids are still complexed, and COSt because, simultaneously, the complex can adjust (lower)
hencey = d,D/L = 1 andp. = m, but ¢z # m; we its dto ensure better electrostatic balance. The net result of
generally find that at this poinbg < m, as demonstrated in this lipid-demixing process is an increase in the amount of
Fig. 9 and in more detail in Fig. 10 below. Asincreases free bilayer. Although imaginary, this process clearly ac-
(hencey decreases) we find, for all values of, thatd  counts for the “earlier” appearanqe (< p,, dy(m) < dy(m))
decreases monotonically, reaching the asymptotic ke ~ Of bare bilayer in a system where lipid exchange is free.
d..(m) asp — <. In this limit we havey — 0 and hence In Fig. 10 we show howvd, andd.,, the values ofi at the
$s — M, but now ¢c # m; in general we find that, boundaries of region ¥ = 1 andy = 0, respectively, vary
with the overall lipid compositiom. The figure also shows
d,(m), the value of the interaxis distance in the complex, at
the phase boundary between regions 1 and 2. Two addi-
tional curves, marked*(m) andd,(m), describe the inter-
axis distance at the isoelectric point and the boundary be-
tween regions 2 and 3, respectively, for the case of blocked
lipid exchange.

The d, and d,, curves in Fig. 10 can be viewed as a
“distillation diagram,” prescribing the lipid compositions in
complexes (of well-defined) and free bilayers, when these
two phases coexist in solution. More explicitly, consider a
' pair of points, such aB andQ, one on thel, and the other
20.0 . L . on thed,, curve, both corresponding to the same valud.of

00 02 04 06 08 10 Then the projections of these points on thaxis, pc = M
and ¢g = Mg, give the lipid compositions of the complex
FIGURE 10 DNA-DNA distances in the complex at phase boundaries 2Nd free bilayer, for all values afi in the rangepc = m =
as a function of the overall lipid composition in solutiod; and d,, ¢g, provided the interaxis distance in the complex.ig his
re_present, r_espectively, _the int_erailxial_di‘st‘ance at the ohsc-it of compleXfollows from the fact that, for thisl, the pointseg and ¢
bilayer coexistence and in the limit pf infinite excess of bilaykrmarks __represent the unique solution of the coexistence conditions
the onset of complex-bilayer coexistence for the case of blocked lipid . A
exchange. Also shown are the DNA-DNA spacing at the isoelectric point(EqS' 13 and 14)' _The relatlvg amounts of |Ip|d in the
(@), and at the limit of the complex-DNA coexistence regiod,)( CcOMplex and the bilayer are dictated by the “lever rule,”
(Io = 50A). Xbc t+ (1 — x)dg = m. In particular, wherny = 1 and hence

450

d/A

350 1

25.0

80.0
700 |
60.0
d/A sl
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¢c = m(andd = d,, pointP), ¢g is the bilayer composition
at the onset of region 3; similarly, whepn= 0 and hence

= m(d = d.., pointQ), ¢ is the asymptotic value of the
complex composition. Experimentally it is of course easier
to follow a vertical linem = constant, such as that between
pointsP andR. Any point on this line dictates a given value
of d and hence, as above, a pair of coexisting compositions
e, dg. Becausamis known, one obtaing using the lever
rule, and then the lipid/DNA ratio fromp = d(m/y)(l/a).

DISCUSSION AND SUMMARY FIGURE 11 The complex unit cell used in the box model. The broken
circles illustrate the DNA cross section. In the model these are the shaded

We have seen in the above that interbilayer repulsion in theurfaces.
complex is responsible for the fact that the amount of
bilayer that the complex can accommodate is finite, result-

ing in the appearance of a free bilayer phase gnerceeds
po(m) > 1. Similarly, inter-DNA repulsion is responsible
for the finite amount of DNA (in excess of that at the
isoelectric point) that can be incorporated into the complex
resulting in the appearance of free DNA in solution wipen
falls below p;(m) < 1. In the previous section, based on
numerical calculations of the complex free energy and th
coexistence conditions, we have shown hggm), d,(m) =
p(M)(@/1m), p,(m) andd,(m) = p,(M)(a/lm) vary with m.
Now we provide a qualitative interpretation of these results
based on a simple “box” model of the complex. As we shall
see, this model, although highly approximate, captures thg
essential physical principles governing the complex stabil;
ity, and yields simple closed-form expressionsdgrd,, p,,
and p,.

DNA rods. An exact identification ofl is irrelevant, as all
of our conclusions involve the ratid/d*.)

The complex free energy is minimal at the isoelectric
point where the net charge on the complex walls is zero.
Above the isoelectric poinip(> 1, d > d*) the net charge
on the complex walls is positive, with the excess, uncom-

ensated charge spread over the bilayer surfaces. Similarly,
whenp < 1, an excess negative charge is spread over the
DNA surfaces. The complex free energy will be calculated
based on two assumptions reflecting these notions. First, it
will be assumed that the electrostatic free energy of the
omplex arises completely from the excess charging of the
bilayer surfaces whep > 1 and from the excess charge on
the DNA surfaces whep < 1. Second, to model the free
energy between a pair of charged (e.g., bilayer) walls, we
shall treat them as infinite two-dimensional surfaces, in the
region where the Debye lengthp] greatly exceeds the
A simple box model Gouy-Chapman lengthld). (More specifically, we shall
onsider the “Gouy-Chapman regime,” wheéggis larger

The complex unit cell may be viewed as a box, bounde hanl Il as th : t the ch d surf
(“above and below”) by two positively charged lipid bilayer i eandcéﬁg ;\)/e as the spacing between the charged surfaces,

“walls” and (to the “left and right”) by two negatively
charged DNA “walls.” The third dimension of this box, ot = (do" — ho")ld = ¢ — (Wd)o~, whereo" =

e;llong theIDNA ]fl‘x'st dl[LeCt'(;n’ IS infinite. Theff:ﬁe energl?/ of ema s the actual cationic surface charge density. Similarly,
the complex reflects the charging energy of these walls, a5~ = e2nl is the charge density on the planar surface

well as the interactions between these charged Surfac?gpresentmg (one-half of) the DNA envelope. In analogy to
(associated with the confinement of mobile ions to the €he bilayer composition, we defin = (a/e)s— = a/2hl as

complex “bo>§ "). Similar factors would dictate the complex the dimensionless charge density (“composition”) of the
free energy if the DNA surfaces were planar rather tharbNA surface. (Recall that = 1.7 A is the separation

cur\d/e?,oa;s shownthln f'FI'gt]. 11, V\tlh'Ch ;”usﬁrgtﬁi ourf boXbetween charges along a DNA strand. Using also 70 A?
mode course, the Tinite curvature of rea SUMaces, ndh = 26 A, we findm ~ 0.8.) The excess charge density

is important for determining the numerical value of the

complex free energy, but not the qualitative dependence o ?n the bilayer surfaces is given by

this quantity on such factors as the lipid charge density ( h_ g

and the asymmetnyd(h ratio) of the unit cell. Thus our first b=m-— gm= (1 - d) (p>1). (15)
approximation is to replace the curved DNA surfaces with

planar surfaces of height, extending between the two
planar bilayers. The distance between these walls will b
denoted asgl. (As indicated in Fig. 11, thigl represents an
intermediate value, smaller than the interaxis separation and

_ _ d
larger than the intersurface spacing between neighboring d=m-—--—m= m(l - d*) (p<2). (16)

Forp > 1, the net charge density on the bilayer surfaces

Similarly, the excess charge density on the DNA surfaces is
eéiven by

= o
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For the electrostatic free energy of the complex, abovehatB/h ~ 0.6. Form = 0.5, this impliesﬁlzld* ~ 1.25,in
the isoelectric point, we write surprisingly good agreement with the value obtained from
our detailed calculationsl,/d* ~ 1.3.
fe = Ad24[In(D¢) — 1] + B/h) (p>1, (17) Using the complex-DNA coexistence condition (Eq. 11),
whereas below the isoelectric point, an equation similar to Eq. 19 can be derived fid* =
d,(m)/d* in the regionp < 1. Here, ford/d* < 1, we find
fo = Ah(2¢[In(D¢) — 1] + B/d) (p<1), (18)

where A = 2sk;T/a, D = 4mwlg/ka, andB = ma/2lg are

constantss denotes the (arbitrary) depth of the unit cell. From this equation it follows that as increasesd, — d,

The first term in Eq. 17 accounts for the excess chargind? dualitative agreement with the results shown in Fig. 8.

energy of the bilayer surfaces (from 049 in the low salt ~ For the equimolar systenm(= 0.5), we findd,/d* ~ 0.77,

(high 1) limit, and follows from Eq. 7 fop ~ q > 1. The which, perhaps fortuitously, is nearly identical to the result

second term in this equation represents the electrostat@erived from our detailed calculations.

interaction between two equally charged surfaces, separated Considering the drastic approximations and assumptions

by a distancé, corresponding to the conditions defining the involved in the formulation and solution of the simple box

Gouy-Chapman regiorh(>=> (1/pk) = I). Equation 18 is, model, we obviously do not expect this model to confirm all

similarly, the electrostatic energy corresponding to exces8f our findings. For instance, we did not even try to include

(negative) charge on the DNA surfaces, whose area ¥ this model the (important) effects of lipid charge modu-

proportional toh and whose separation i lations, or to account for the more complicated case of free
To solve the coexistence conditions, we also need the frefPid exchange. Note also that none of the above equations

energies of the bare bilayer and the naked DNA. Theeflect the dependence of the phase boundaries on the salt

electrostatic free energy of the bilayer is given by the firstconcentration in the system (which follows from the fact

term in Eq. 17, with the actual charge, replacing the net that the model was applied for the Gouy-Chapman region,

charges; namely,fy = Ad(2m[In(Dm) — 1]). Our analysis corresponding to low salt solutions). Nevertheless, as stated

of the bilayer-complex coexistence will be limited to the earlier, the simple box model does capture the basic features

simpler case of “blocked lipid exchange.” In this case theof the complex-DNA and complex-bilayer coexistence.

lipid mixing free energy in the free bilayer and the complex

are identical and can thus be disregarded. For the chargin

energy of the naked DNA surfaces (which, for consistency Other models

d=d*(1—exd—(1+Bmhm]) (p<1). (21)

we treat as planar), we havig = Ah(2m(In(Dm) — 1]. Bruinsma (1998) has independently discussed how the non-
Using the above expressions figrandfg in the bilayer-  jinear Poisson-Boltzmann theory can account qualitatively
complex coexistence condition (Eq. 12), we obtain for the features observed by &er et al. (1997) for the

d a* B structural evolution of DNA-cationic lipid complexes as a
In(l - *) +—+-—=0 (p>1). (19) function of charged lipid-to-DNA ratio. Because he devel-
d d  2h ops an analytical (rather than numerical) solution of the
_ az(m)’ determines the Problem, he is constrained to introducing several simplifi-

The solution of this equatiord . I
value ofd at the boundary between regions 2 and 3 for thecations (e.g., low surface charge densities, and no added

case of blocked lipid exchange. Correspondinglym) = salt) in addition. to those discussed in our pregent wo.rk.
maz(m)(lla). Nevertheless, his model of the lipoplex is consistent with

Suppose first thaB = 0, as would be the case if there ©UTS and provides a slightly different flavor to its interpre-
were no repulsion between the charged bilayer surfacei@tion- He too aIIows. for'spat|al vanapon of .the b]layer
in the complex. For this hypothetical case we find thatsurfacg charge density, induced by mtera}cnon With .the
d,(m) — o. This result is consistent with the fact that, for all oppositely charged DNA strands, and, while not solving

finite d, the effective charge on the complexed bilaykris explicitly for 1n(x), is careful tq .treat self-consistently' the
smaller than that of the free bilayen, Consequently, in the corresponding boundary condition for the electrostatic po-

absence of interbilayer repulsion, the complex free energy il€ntial at this surface. Also in his treatment, two-phase
always lower than that of the free bilayer, which explainsCO€Xistence between the complex and excess DNA (low

the unbound uptake of bilayer into the complex. We know,?) and excess lipid (higfp) are identified by chemical
however, thaﬂz(m) is not much larger thad* (see Fig. 8); potential relations equivalent to our Eqgs. 11-14. However,
i.e., bilayer repulsion is important. For/d < 1, we find unlike in our model, where the naked DNA is treated as a

from Eq. 19 that macroscopic phase (embedded in a dilute aqueous salt so-
lution), Bruinsma’s expression for the free energy of DNA
az = d*/(1 — exd—(1 + B/2hm)]) (p>1), (20) in solution is based on a cell-like model for the pure coun-
. terion case (Lifson and Katchalsky, 1954), which involves a
indicating thatd,(m)/d* is a decreasing function ah. For  In ® term, with® denoting the volume fraction of the free
the molecular parameters used in our calculations, we findNA. This & dependence then enters the DNA-lipoplex
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equilibrium condition, implying a weak dependencedain  but also because it underplays the special nature of the
p at finite ® (excess DNA, our region 1). Arourdt = 0,  isoelectric complex as one that tends to suck in both excess
which is identified as the isoelectric poird,shows a sin- DNA and cationic lipid bilayers because of the lower con-
gular dependence ch (equivalently,p), increasing steeply centrations made available to bound counterions than in the
from a low value to a higher one, the latter determined by‘free” DNA and “free” liposomes.

lipoplex-bilayer coexistence. In other words, the isoelectric

point is unstable with respect to uptake of either DNA or

bilayer. In our terminology this picture implies a sudden CONCLUDING REMARKS

i = p* = i -
jump fromd, to d;, andp, = p* = p,, i.€,, No one-phase Using an electrostatic model for the lipoplex and straight-

(complex) region. This result is at variance with our find- forward, though appropriately modified, thermodynamic

INgs. On the other. hand, Br“"?sr."as conclusions reg.ardm%xpressions for phase equilibria, we were able to explain the
region 3 (excess bilayer) are similar to ours. He explains the

constancy of DNA-DNA spacing at highvalues in terms _structure and phase e_vo_lutlt_)n in aqueous sol_utlons contain
S . . o ing DNA, neutral-cationic liposomes, and’ Lipoplexes.
of the repulsive interaction between bilayers within the
e S . . Our treatment of these phenomena was based on the
complex; this repulsion increases with the deviation from . L :
; . . . remise that the lipid bilayers in the complex are perfectly
the isoelectric point and hence ultimately overwhelms th . S "
. L lanar and of constant thickness, for all lipid compositions.
effect of counterion release that had been driving uptake

the lipid bilayer. Recall that we had explained the uptake ofofh It?i, zf ggz;ﬁﬁ Ifi Eiir;i"tifgrr?;';nn?;ﬁr]s’ \i)?:lt(zja:\zr()llljzldcslrl\?sﬁrrse
DNA (p < 1) and bilayer § > 1) in terms of the entropy 9 gng P ’

gain of bound counterions (relative to their state in “free” consisting of lipids with similar chain lengths. On the other

. . . . hand, as mentioned in the Introduction, there is strong
DNA or “free” bilayer, respectively) as they move into the . . . .
: C 2 : experimental evidence for the existence of nonlamellar li-
complex with significantly lower concentrations. See, for

H H “ ” (o
example, the excess charge densities defined by Egs. 15 a@v%:)ls;is’n:pn;?rt:gl:ﬂt’ th t?]r:?r/w(\:/(;rr?g d r(g)lg'l Emf(ﬁ)i(gs
16 in the “box” model, each of which is generally quite y y gona

small compared to their *bare” values in the free macroion£hase' In fact, it is not hard to imagine that this would be the

(DNA or liposome). This phenomenon appears still morepreferred complex geometry for a Iipid_ mixture_ whose
dramatically in the approximate analytical work of Bruinsma (Dmggél_?éi;;)nir?por:;[;rl'ﬁg)us curvature is negative (e.g,
leading to “isoelectric instability.” 9 '

Dan (1997) has proposed a quite different explanation of Qw_te ge_nerally, variations in Fh.e .“p'd composition imply
: : variations in both the bending rigidity and the spontaneous
the constancy of DNA spacings at low and high values of L o
urvature of the monolayers constituting a lipid membrane.

charge lipid to DNA. Her argument is based on the idea thafn an L& complex, for instance, softening the membrane
elastic deformation of the bilayer by its interaction with Plex, ' 9

DNA gives rise to an effective attraction between the DNA:’iv?glg"rgojrtsp;:):fnbéﬁgvgmi thjrgr?;irecrgﬁsllg gfgjr\?;:ﬂree
strands. At higtp values (i.e., low DNA content relative to P Y X

lipid, at fixed neutral-to-cationic lipid ratio; note that Dan’s _modulat|ons“betvv_ee? stacked (lipoplex) b|_Iayers may result
S ' . L in 3D order (“locking”) of the DNA strands in the complex.
ratio p is defined in a way that makes it inversely propor-

tional to ours), all of the DNA in solution is intercalated in If, by compositional variations, the lipid membranes change

. s . . both their rigidity and spontaneous curvature, a structural
the sandwich complexes, which in turn coexist with excess o
hase transition may take place between one complex ge-

liposomes. Here the DNA spacing takes on its optimu bmetry and another (e.g.,°L— HE). This scenario is

value,d,, reflecting directly the competition between these X .
relatively long-range attractions (taken to vary linearly with gorroborated by very recent experiments (Safmya_, unpul_a-
gshed observations). Theoretical work along these lines is in

d) and the exponentially screened, electrostatic repulsion Oaress
Upon decreasing and adding DNA, more and more of the prog ’
“free” bilayer is bound, with the DNA spacing remaining
nstan . This region persi wn joval hat ar
constant atly. This region persists down jovalues thatare  \ppeNpjx. THE NUMERICAL PROCEDURE
low enough that there is no longer any “free”/“excess
bilayer. A further decrease ip leads to a decrease ih In solving the_full nonlinear Poisson-BoItzmgnn eq_uation, we follow pre-
spacing, because the strand-bilayer adsorption energy ovéﬁouﬁ calculations of ;hi electrlost_atlc potential, Wlhlch errjployecli( Nfevxton-d
whelms the strand-strand repulsion. But, according to Danf;aPson iterations of the Laplacian (Carnie et al., 1994; Stankovich an
his d indi ted by th tofthe i lectri int Carnie, 1996). The problem is thus reduced to a sequence of linear elliptic
this drop indis arrested by the onset of the isoelectric point,qations of the form
beyond which, she argues, the DNA spacing will remain
constant at a value equal to the average distdnbetween Va1 — (COSYr) .1 = Sinhyy, — (coshy) g,  (22)
cationic lipid charges (or to the hard-core diameter of the _ o o
DNA strands, if this quantity is |arger theﬂhc,). This sce- N WhIC'h'l[.ln is the electrostatic potential |n_tfmth iteration ste_p. (The value
0. th is siqnifi ty diff tf th t of the initial guessy),, can be chosen arbitrarily, and was in general set to
nario, ,en’ IS’Slgnl ICantly ditterent irom the presen one% = 0 in our calculations.) A1 — «, s, converges to the solution of
and Bruinsma’s, not only because of the central role asme full nonlinear equation. In practice, fewer than 50 iterations ensures

cribed to an effective attraction between intercalated DNAS|y,, — ¢, < 1072 for all grid points.
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The linear elliptic problem was solved in each iteration by using the Tim Salditt, llya Koltover, Brigitta Sternberg, and Chezy Barenholtz for
publicly available GENCOL routine (Houstis et al., 1985). This procedure helpful comments, and Robijn Bruinsma and Nily Dan for reprints of their
can solve the linear equation on an arbitrary (closed) domain, usingvork.

collocation with b_'CUb'C Hermite functlon;. In most‘ cases, a>4040‘ The financial support of the Israel Science Foundation (AB-S grant 8003/
evenly spaced grid was used, but sometimes a variably spaced grid WQJSI), the U.S.-Israel Binational Science Foundation (AB-S and WMG, grant
also used. 94/130), and the National Science Foundation (WMG, grant NSF-DMR-

For the lipid membrane, a n_onlinear boundary condition (see EQ' 5)9708646) is gratefully acknowledged. SM thanks the Minerva Stiftung for
must be solved, stating the relation between the surface charge density, tlae

. .- . ostdoctoral fellowship. The Fritz Haber research center is supported b
potentialy, and the Lagrange multiplie(). This can be handled through ths Minerva Foundationp Munich, Germany PP y
the use of a second Newton-Raphson iteration on the boundary condition, ' ' '
in addition to the one on the Laplacian. The two iterations can then proceed

simultaneously. Writing Eq. 5 in the form
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